Polynomial bound and nonlinear smoothing for the Benjamin-Ono equation on the circle
نویسندگان
چکیده
For initial data in Sobolev spaces H s ( T ) , 1 2 < ? the solution to Cauchy problem for Benjamin-Ono equation on circle is shown grow at most polynomially time a rate + t 3 ? ? 0 ? . The key establishing this result discovery of nonlinear smoothing effect equation, according which satisfied by certain gauge transform, widely used well-posedness theory problem, becomes smoother once its free removed.
منابع مشابه
Global well-posedness in the Energy space for the Benjamin-Ono equation on the circle
We prove that the Benjamin-Ono equation is well-posed in H(T). This leads to a global well-posedeness result in H(T) thanks to the energy conservation. Résumé. Nous montrons que l’équation de Benjamin-Ono est bien posée dans H(T). Il découle alors de la conservation de l’énergie que la solution existe pour tout temps dans cette espace.
متن کاملPerturbation theory for the Benjamin–Ono equation
We develop a perturbation theory for the Benjamin–Ono (BO) equation. This perturbation theory is based on the inverse scattering transform for the BO equation, which was originally developed by Fokas and Ablowitz and recently refined by Kaup and Matsuno. We find the expressions for the variations of the scattering data with respect to the potential, as well as the dual expression for the variat...
متن کاملWell-posedness in H for the (generalized) Benjamin-Ono equation on the circle
We prove the local well posedness of the Benjamin-Ono equation and the generalized Benjamin-Ono equation in H(T). This leads to a global wellposedness result in H(T) for the Benjamin-Ono equation.
متن کاملSharp ill-posedness result for the periodic Benjamin-Ono equation
We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2021.06.018